Skip to main content

ChatAnthropic

Anthropic is an AI safety and research company. They are the creator of Claude.

This will help you getting started with Anthropic chat models. For detailed documentation of all ChatAnthropic features and configurations head to the API reference.

Overview

Integration details

ClassPackageLocalSerializablePY supportPackage downloadsPackage latest
ChatAnthropic@langchain/anthropicNPM - DownloadsNPM - Version

Model features

See the links in the table headers below for guides on how to use specific features.

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingToken usageLogprobs

Setup

You’ll need to sign up and obtain an Anthropic API key, and install the @langchain/anthropic integration package.

Credentials

Head to Anthropic’s website to sign up to Anthropic and generate an API key. Once you’ve done this set the ANTHROPIC_API_KEY environment variable:

export ANTHROPIC_API_KEY="your-api-key"

If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:

# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"

Installation

The LangChain ChatAnthropic integration lives in the @langchain/anthropic package:

yarn add @langchain/anthropic

Instantiation

Now we can instantiate our model object and generate chat completions:

import { ChatAnthropic } from "@langchain/anthropic";

const llm = new ChatAnthropic({
model: "claude-3-haiku-20240307",
temperature: 0,
maxTokens: undefined,
maxRetries: 2,
// other params...
});

Invocation

const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessage {
"id": "msg_013WBXXiggy6gMbAUY6NpsuU",
"content": "Voici la traduction en français :\n\nJ'adore la programmation.",
"additional_kwargs": {
"id": "msg_013WBXXiggy6gMbAUY6NpsuU",
"type": "message",
"role": "assistant",
"model": "claude-3-haiku-20240307",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 29,
"output_tokens": 20
}
},
"response_metadata": {
"id": "msg_013WBXXiggy6gMbAUY6NpsuU",
"model": "claude-3-haiku-20240307",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 29,
"output_tokens": 20
},
"type": "message",
"role": "assistant"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 29,
"output_tokens": 20,
"total_tokens": 49
}
}
console.log(aiMsg.content);
Voici la traduction en français :

J'adore la programmation.

Chaining

We can chain our model with a prompt template like so:

import { ChatPromptTemplate } from "@langchain/core/prompts";

const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);

const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "msg_01Ca52fpd1mcGRhH4spzAWr4",
"content": "Ich liebe das Programmieren.",
"additional_kwargs": {
"id": "msg_01Ca52fpd1mcGRhH4spzAWr4",
"type": "message",
"role": "assistant",
"model": "claude-3-haiku-20240307",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 23,
"output_tokens": 11
}
},
"response_metadata": {
"id": "msg_01Ca52fpd1mcGRhH4spzAWr4",
"model": "claude-3-haiku-20240307",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 23,
"output_tokens": 11
},
"type": "message",
"role": "assistant"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 23,
"output_tokens": 11,
"total_tokens": 34
}
}

Content blocks

One key difference to note between Anthropic models and most others is that the contents of a single Anthropic AI message can either be a single string or a list of content blocks. For example when an Anthropic model calls a tool, the tool invocation is part of the message content (as well as being exposed in the standardized AIMessage.tool_calls field):

import { ChatAnthropic } from "@langchain/anthropic";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";

const calculatorSchema = z.object({
operation: z
.enum(["add", "subtract", "multiply", "divide"])
.describe("The type of operation to execute."),
number1: z.number().describe("The first number to operate on."),
number2: z.number().describe("The second number to operate on."),
});

const calculatorTool = {
name: "calculator",
description: "A simple calculator tool",
input_schema: zodToJsonSchema(calculatorSchema),
};

const toolCallingLlm = new ChatAnthropic({
model: "claude-3-haiku-20240307",
}).bindTools([calculatorTool]);

const toolPrompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant who always needs to use a calculator.",
],
["human", "{input}"],
]);

// Chain your prompt and model together
const toolCallChain = toolPrompt.pipe(toolCallingLlm);

await toolCallChain.invoke({
input: "What is 2 + 2?",
});
AIMessage {
"id": "msg_01DZGs9DyuashaYxJ4WWpWUP",
"content": [
{
"type": "text",
"text": "Here is the calculation for 2 + 2:"
},
{
"type": "tool_use",
"id": "toolu_01SQXBamkBr6K6NdHE7GWwF8",
"name": "calculator",
"input": {
"number1": 2,
"number2": 2,
"operation": "add"
}
}
],
"additional_kwargs": {
"id": "msg_01DZGs9DyuashaYxJ4WWpWUP",
"type": "message",
"role": "assistant",
"model": "claude-3-haiku-20240307",
"stop_reason": "tool_use",
"stop_sequence": null,
"usage": {
"input_tokens": 449,
"output_tokens": 100
}
},
"response_metadata": {
"id": "msg_01DZGs9DyuashaYxJ4WWpWUP",
"model": "claude-3-haiku-20240307",
"stop_reason": "tool_use",
"stop_sequence": null,
"usage": {
"input_tokens": 449,
"output_tokens": 100
},
"type": "message",
"role": "assistant"
},
"tool_calls": [
{
"name": "calculator",
"args": {
"number1": 2,
"number2": 2,
"operation": "add"
},
"id": "toolu_01SQXBamkBr6K6NdHE7GWwF8",
"type": "tool_call"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 449,
"output_tokens": 100,
"total_tokens": 549
}
}

Custom headers

You can pass custom headers in your requests like this:

import { ChatAnthropic } from "@langchain/anthropic";

const llmWithCustomHeaders = new ChatAnthropic({
model: "claude-3-sonnet-20240229",
maxTokens: 1024,
clientOptions: {
defaultHeaders: {
"X-Api-Key": process.env.ANTHROPIC_API_KEY,
},
},
});

await llmWithCustomHeaders.invoke("Why is the sky blue?");
AIMessage {
"id": "msg_019z4nWpShzsrbSHTWXWQh6z",
"content": "The sky appears blue due to a phenomenon called Rayleigh scattering. Here's a brief explanation:\n\n1) Sunlight is made up of different wavelengths of visible light, including all the colors of the rainbow.\n\n2) As sunlight passes through the atmosphere, the gases (mostly nitrogen and oxygen) cause the shorter wavelengths of light, such as violet and blue, to be scattered more easily than the longer wavelengths like red and orange.\n\n3) This scattering of the shorter blue wavelengths occurs in all directions by the gas molecules in the atmosphere.\n\n4) Our eyes are more sensitive to the scattered blue light than the scattered violet light, so we perceive the sky as having a blue color.\n\n5) The scattering is more pronounced for light traveling over longer distances through the atmosphere. This is why the sky appears even darker blue when looking towards the horizon.\n\nSo in essence, the selective scattering of the shorter blue wavelengths of sunlight by the gases in the atmosphere is what causes the sky to appear blue to our eyes during the daytime.",
"additional_kwargs": {
"id": "msg_019z4nWpShzsrbSHTWXWQh6z",
"type": "message",
"role": "assistant",
"model": "claude-3-sonnet-20240229",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 13,
"output_tokens": 236
}
},
"response_metadata": {
"id": "msg_019z4nWpShzsrbSHTWXWQh6z",
"model": "claude-3-sonnet-20240229",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 13,
"output_tokens": 236
},
"type": "message",
"role": "assistant"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 13,
"output_tokens": 236,
"total_tokens": 249
}
}

Prompt caching

Compatibility

This feature is currently in beta.

Anthropic supports caching parts of your prompt in order to reduce costs for use-cases that require long context. You can cache tools and both entire messages and individual blocks.

The initial request containing one or more blocks or tool definitions with a "cache_control": { "type": "ephemeral" } field will automatically cache that part of the prompt. This initial caching step will cost extra, but subsequent requests will be billed at a reduced rate. The cache has a lifetime of 5 minutes, but this is refereshed each time the cache is hit.

There is also currently a minimum cacheable prompt length, which varies according to model. You can see this information here.

This currently requires you to initialize your model with a beta header. Here’s an example of caching part of a system message that contains the LangChain conceptual docs:

let CACHED_TEXT = "...";
import { ChatAnthropic } from "@langchain/anthropic";
import { HumanMessage, SystemMessage } from "@langchain/core/messages";

const modelWithCaching = new ChatAnthropic({
model: "claude-3-haiku-20240307",
clientOptions: {
defaultHeaders: {
"anthropic-beta": "prompt-caching-2024-07-31",
},
},
});

const LONG_TEXT = `You are a pirate. Always respond in pirate dialect.

Use the following as context when answering questions:

${CACHED_TEXT}`;

const messages = [
new SystemMessage({
content: [
{
type: "text",
text: LONG_TEXT,
// Tell Anthropic to cache this block
cache_control: { type: "ephemeral" },
},
],
}),
new HumanMessage({
content: "What types of messages are supported in LangChain?",
}),
];

const res = await modelWithCaching.invoke(messages);

console.log("USAGE:", res.response_metadata.usage);
USAGE: {
input_tokens: 19,
cache_creation_input_tokens: 2925,
cache_read_input_tokens: 0,
output_tokens: 327
}

We can see that there’s a new field called cache_creation_input_tokens in the raw usage field returned from Anthropic.

If we use the same messages again, we can see that the long text’s input tokens are read from the cache:

const res2 = await modelWithCaching.invoke(messages);

console.log("USAGE:", res2.response_metadata.usage);
USAGE: {
input_tokens: 19,
cache_creation_input_tokens: 0,
cache_read_input_tokens: 2925,
output_tokens: 250
}

Tool caching

You can also cache tools by setting the same "cache_control": { "type": "ephemeral" } within a tool definition. This currently requires you to bind a tool in Anthropic’s raw tool format Here’s an example:

const SOME_LONG_DESCRIPTION = "...";

// Tool in Anthropic format
const anthropicTools = [
{
name: "get_weather",
description: SOME_LONG_DESCRIPTION,
input_schema: {
type: "object",
properties: {
location: {
type: "string",
description: "Location to get the weather for",
},
unit: {
type: "string",
description: "Temperature unit to return",
},
},
required: ["location"],
},
// Tell Anthropic to cache this tool
cache_control: { type: "ephemeral" },
},
];

const modelWithCachedTools = modelWithCaching.bindTools(anthropicTools);

await modelWithCachedTools.invoke("what is the weather in SF?");

For more on how prompt caching works, see Anthropic’s docs.

API reference

For detailed documentation of all ChatAnthropic features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html


Was this page helpful?


You can also leave detailed feedback on GitHub.